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Goals of the talk

1. Discuss framework for studying moduli problems in algebraic
geometry

2. Apply this framework to moduli of objects in dg-categories

3. Discuss implications for homological mirror symmetry



Motivation

Homological mirror symmetry: For a Calabi-Yau manifold M,
there is a mirror CY M" such that

DPFuk(M) = D’Coh(M").

Proposed constructions of M"Y

1. Strominger-Yau-Zaslow (1996): M"Y = moduli space of special
Lagrangian tori in M<— developed

2. Pomerleano, Gross-Siebert (~2015, [3,6]): coordinate ring of
MY determined by log GW invariants of M or SH« developed

3. Toén-Vaquié (2015, [8]): M" = moduli space of objects in
D’Fuk(M)+ we will develop this today

Challenges: (1) constructing special Lagrangian fibrations and
compactifying MV, (2) resolving singularities of M"
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Non-commutative algebraic geometry

Ground field k, char(k) = 0.

* (Kontsevich-Soibelman, [5]) A non-commutative space is a
smooth and proper dg-category €

e (Toén-Vaquié, [7]) € = Perf(A®) for A® a dg-algebra with
dimH*(A®) < o and A® € Perf(A ® A°P).
Perf(A) C Modg,(A) is the smallest thick triangulated
subcategory containing A.

Examples

e D”Coh(X), with X a smooth and proper variety

J DbModﬁn(A), with A a finite dimensional algebra of finite
global dimensional

o DPFuk(M), with M a compact symplectic manifold with
generating collection of Lagrangians
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The moduli problem

1. A stack is a functor 2" : k—Alg — Groupoid, + descent

2. A derived stack is a functor 2 : CDGA/Sk0 — oo — Groupoid

3. A derived stack is n-geometric and f.p. if there is a cover
U = Spec(R) — 2~ with R € CDGA=Y of finite presentation
over k such that U x ¢ U is (n— 1)-geometric and f.p.
(0-geometric if 2" = Spec(R).)

For R either a k-algebra or non-positively graded CDGA over k,
define

=

A (R) =Perf(R®; A®)
(—)~ is the subcategory of isomorphisms.
Theorem (Toén-Vaquié, 2005, [7])

A is a union of finitely presented n-geometric open substacks.
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Key concept: ¢-structures

Definition (z-structure)

A t-structure on ¢ consists of subcategories (6%, %<o)
satisfying:

O (g>0[1] C Cg>01
e Hom(%~0,%<0) =0, and

e VE € €, 3 an exact triangle E~g — E — E<o —, with
E-o € %9 and E<yc ngo.

Definition (The heart)

€V :=%-_1NE<o CE. Itis an abelian category.

Example: In the standard z-structure on D Mod(R), €~ consists
of complexes with H;(F,) = 0 for i <0.



1 The moduli problem

A more manageable moduli stack
Equip € = Perf(A) with a t-structure.

VR € CDGA/gkO, this induces a #-structure on Modg, (R ®¢A):

® Modg,(R®yA)>o generated under extensions and colimits by
R®E with E € €.

We can identify a classical substack:
MO (R) = {E € M(R) | S®rE € Mody(S®A)”, VR — S}
(For a k-algebra R, .#~(R) is a groupoid, not an co-groupoid)

Example

o ./ = flat families of coherent sheaves on a variety X
° %Q — UnZORepn(A)/GL" C %DbMOdfin(A)
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Moduli spaces in algebraic geometry

Suppose 2" is a 1-geometric f.p. stack.
Definition (Alper, 2008, [1])

A good moduli space g : & — X is a morphism to an algebraic
space s.t. g, : QCoh(Z") — QCoh(X) exact and ¢.(C 4 ) = Ox.

e Consequence: g is the universal map to an algebraic space.

e Etale locally over X, it looks like a GIT quotient morphism
Spec(R)/G — Spec(R®) (Alper-Hall-Rydh, 2019).

e Since (Alper-HL-Heinloth,2018), we have effective ways to
construct moduli spaces directly, without GIT
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®-semistability

If Z is only locally f.p., you need a notion of semistability. A
numerical invariant is a locally constant v : Map(®,.2") — R,
where ® := Al /G,, (some hypotheses omitted).

Example: For the stack of vector bundles on a Riemann surface,
amap f:0 — Z is a filtration of bundles ---V,, 1 CV,, C---. If

v(f) = Zw(%ramk(GW) — deg(Gy)) + ¥ whrank(Gy,)

Definition (®-semistability, [4])

A point x € 2 is semistable if for all f:® — 2 with f(1) =x,
v(f) > 0. An HN filtration is an f that minimizes v.*

*Should allow Q-filtrations or R-filtrations in general.
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A general structure theorem

Definition (Codimension two filling conditions)

2 is ®- and S-complete if for any regular surface S with
non-trivial G,,-action and closed fixed point 0 € S, any
Gm-equivariant family over S\ 0 extends equivariantly and
uniquely to S.

Suppose 2" is locally f.p., 1-geometric, ®- and S-complete, and
families over punctured discs extend over punctures.

Theorem ([2,4])

1. HN-boundedness = every x € 2" has a unique HN-filtration,
and these give a locally closed stratification of 2" (a
@-stratification), with 2™ C 2" open

2. 2% bounded = 2% has a proper good moduli space
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Stability conditions

Fix a free abelian group A of finite rank with norm ||—|| and a
locally constant additive map v:.Z — A.

Example: For D?Coh(X), v is the Chern character and
A C H*(X;Q) its image.

A stability condition on € consists of:
L. t-structures (6% ¢, C<¢p)pcr
2. homomorphism Z: A — C
We require 3¢ € R,w € (0, 1) such that:
(a) €59 =Uusp C>a
(b) VE €€, E € Clup) = C>aNC<p for some a < b
(c) fb—a=wand 0#E € 6, with v=v(E), then

2(v)/|Iv] € eferintad
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Stability conditions ||

This is not the original definition of a stability condition, but it is
equivalent:
1. We can define ¢ (E) = inf{b|E € €<} and
0~ (E) = sup{alE € %...}
2. E is semistable of phase ¢ if 9T (E)=¢ (E) = ¢
3. Every E € € has a HN filtration E; — E» — --- with gr;(E,)
semistable of phase ¢;, and ¢; > ¢ > --- > ¢y.

4. For E € €, define the mass m(E) =Y;|Z(gr;(E))|

For experts: We call the structure (6%¢,%<¢)gcr a sluicing.
(Also require an “almost noetherian” hypothesis.) If R — S is a
composition of polynomial algebras, localizations, and perfect
algebras, then a sluicing on Perf(R®A) induces one on
Perf(S®A).
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Main theorem

Mass-Hom inequality for a stability condition: 3C > 0 such that
VM*® € Perf(A*®),
dim(H*(M*®)) < Cm(M*®).

Theorem (HL-Robotis)

If mass-Hom inequality holds, then Yo € R, letting .#% := .4
for the t-structure with €% = Clo-1,0]:

1. A% C A is a 1-geometric open substack,

2. . has a ®-stratification by HN filtrations, and VM > 0,
{E|m(E) <M} C .#? is a bounded open union of strata, and

3. A5 C .M is open and has a proper good moduli space, Vv.
v

(Condition (3) implies dimH*(M®) < f(m(M*)) for some f(—).)



The key idea

Boundedness! .#" C .# is automatically ®- and S-complete, so
general theorem applies.

e HN-boundedness amounts to this claim: for a bounded set
S C A, the set {grf'N(E)|E € S} is also bounded

e Toén-Vaquié show that the forgetful functor f : .# — Perf —
taking M* € Perf(R®A®) and regarding it as an object in
Perf(R) — is quasi-compact

e The set {E € €y_1,9/m(E) <M} is contained in the
preimage of a bounded subset of Perf, hence bounded

e This simultaneously implies HN-boundedness and boundedness

of M*
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Motivation: the space Astab(%)

1. Bridgeland’s theorem: 3 a metric topology on Stab(%) such
that the forgetful map Stab(%¢) — Hom(A,C) is a local
homeomorphism

2. With Robotis: we construct a partial compactification
Stab(%")/C C Astab(%’), the space of augmented stability
conditions, and conjecture it is a manifold with corners

3. Admissible boundary points have connected neighborhoods for
any ¥ = mass-Hom bound for any %

° o —

L0
<lg

<L
stoldi IH'y
{60,6)
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Additional comments

e We conjecture the mass-Hom bound holds for any stability
condition on ¥ — otherwise, maybe that should be added to
the definition

e Mass-Hom inequality was previously considered by lkeda and
Fan-Filip-Haiden-Katzarkov-Liu

e For € = D’Coh(C) for a compact Riemann surface C,
mass-Hom bound corresponds to Le Potier's upper bounds on
dimH(C, F) for a semistable vector bundle F

e Mass-Hom inequality only depends on the path component of
0 € Stab(%’), holds for any o such that €,_; ¢ is artinian,
and is preserved by gluing along semiorthogonal
decompositions.

e E.g., the theorem gives a new construction of moduli spaces of
Gieseker semistable sheaves on P2.
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Assume the mass-Hom inequality, and that % is 3CY, meaning
Hom(E,F) = Hom(F,E[3])*, and connected.

Lemma (For fixed v € A and ¢ € R)

If VE,F € .4, dimHom(E,E) = 1, dimExt' (E,F) =3 if EXF
and 0 otherwise, then the moduli space M) is a compact
Calabi-Yau 3-manifold, and Eypniy € € @ Perf(.;°) defines an
equivalence

RU( M Euniy @ (=) : Perf* (M) = €.

Here 7 denotes a twist by the Brauer class opposite that of the
G-gerbe A5 — M) .

A mystery: if € is CY3, virtual dimension of .Z* is 0. These
moduli spaces have no right to exist!
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Translation into symplectic topology

Let (M,J,g,Q) be a Calabi-Yau manifold of complex dimension
n. (J complex structure, g Kaéhler metric, Q € H()(M.Qﬁ/,)
holomorphic volume form)

Objects of D’Fuk(M) are compact “immersed Lagrangian
branes” f:L — M. In addition to an orientation, a local system
E on L, relative spin structure, and a bounding cochain, L has a
grading function 6 : L — R such that Q|;, = ePLdvol; .

Say L is w-almost calibrated if 6, takes values in some interval of
width < w.

We will always assume M has a generating set of Lagrangians
Ly,...,L, satisfying Abouzaid's criterion.



1 The moduli problem

Some conjectures

The Thomas-Yau-Joyce proposal [?TS, ?joyce]: there is a

stability condition on ¢ = D’Fuk(M) with

® Glap) C € are the objects represented by Lagrangian branes
with im(0z) C (a,b] (Including a or b =e0), and Z(L) = [, Q.

Quantitative conjectures arise from this proposal, for 0 <w < 1,
fixed Lagrangian brane L', fixed norm ||e|| on H,(M):

Conjecture

3C > 0 such that for any w-almost calibrated L,
e ||[L]|| £C-Vol(L), and < support property
o dimHF°(L’,L) < C-Vol(L). + mass-Hom bound
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The existence of HN filtrations is usually equated with the
convergence of Lagrangian mean curvature flow (with surgery),
but this is not necessary:

Lemma

If the conjectured inequalities hold, and ¢, ¢, € R with
@1 — @ ¢ 7Z such that any L € D’Fuk(M) lies in an exact triangle

Li—L—1L,—
with 6z, > m@; and 67, < w@;, then the proposal defines a

stability condition on D?Fuk(M) with a mass-Hom bound.

Question: Can one verify these conditions without showing
convergence of mean curvature flow?
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What is homological mirror symmetry?

Start with a Calabi-Yau manifold M. Original proposal: 3 a
mirror manifold MV and 3 equivalence D’Fuk(M) =2 D’Coh(M").

The updated proposal: (Partially inspired by [6])

1. Verify the inequalities ||[Z]|| < CVol(L) and
dimHF%(L',L) < CVol(L) for L w-almost calibrated

2. Show that every L is an extension L; — L — L, —, as in the
lemma

3. Find an embedded special Lagrangian L = T, with
v=|[L] € H,(M), e.g., with the methods of Yang Li. Perhaps
L being w-almost calibrated is enough.

4. This gives a functor @ : Perf* (M;®) — €.

Now one can ask, is @ fully-faithful? (If A7)* were also smooth
this would imply @ is an equivalence.)
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